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SUMMARY

Data races are a common problem in concurrent and multi-threaded programming. Experience shows
that the classical notion of a data race is not powerful enough to capture certain types of inconsistencies
occurring in practice. This paper investigates data races on a higher abstraction layer. This enables
detection of inconsistent uses of shared variables, even if no classical race condition occurs. For example, a
data structure representing a coordinate pair may have to be treated atomically. By lifting the meaning of
a data race to a higher level, such problems can now be covered. The paper defines the concepts ‘view’ and
‘view consistency’ to give a notation for this novel kind of property. It describes what kinds of errors can
be detected with this new definition, and where its limitations are. It also gives a formal guideline for using
data structures in a multi-threaded environment. c© US Government copyright
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1. INTRODUCTION

Multi-threaded, or concurrent, programming is becoming increasingly popular in enterprise
applications and information systems [1,2]. The Java programming language [3] explicitly supports this
paradigm [4]. Multi-threaded programming, however, provides a potential for introducing intermittent
concurrency errors that are hard to find using traditional testing. The main source of this problem is
that a multi-threaded program may execute differently from one run to another due to the apparent
randomness in the way threads are scheduled. Since testing typically cannot explore all schedules,
some bad schedules may never be discovered. One kind of error that often occurs in multi-threaded
programs is a data race, as defined below. This paper will go beyond the traditional notion of what will
be referred to as low-level data races, and introduce high-level data races, together with an algorithm
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for detecting them. Low-level as well as high-level data races can be characterized as occurring when
two or more threads access a shared region simultaneously, the definition of region being dependent on
what kind of data race is referred to.

Data races are very hard to detect with traditional testing techniques. Not only does a simultaneous
access from two or more threads to a particular region have to occur, but this should additionally result
in corrupted data, which violate some user-provided assertion. They are usually harder to detect than
deadlocks, which often cause some visible activity to halt. The suggested algorithm, first presented
in [5], analyses a single execution trace obtained by running an instrumented version of the program.
In this context, single execution means that the program is run once. While running, it emits a series of
events which constitute the execution trace. The analysis algorithm which analyses the execution trace
is, for practical purposes, mostly independent of the thread interleavings during program execution.
Hence the program only needs to be run once.

The algorithm requires no user-provided requirement specification, and hence is in line with the
Eraser algorithm [6] for detecting low-level data races. This means that the algorithm is totally
automated, requiring no user guidance at all beyond normal input. The algorithm looks for certain
patterns in the execution trace, and raises a warning when such cases are detected. A data race does
not have to occur in the run that generated the execution trace, which is why the algorithm is more
powerful than traditional testing techniques. The algorithm is neither sound, nor complete, and may
yield false positives (false warnings) and false negatives (missed errors). However, it is the opinion
of the current authors that the increased probability of detecting errors strongly out-balances this, in
particular considering that it is fully automated. In addition, practice seems to demonstrate that the
rates of false positives as well as false negatives are low.

The algorithm has been implemented in the Java PathExplorer (JPaX) tool [7–9], which provides
a general framework for instrumenting Java programs, and for monitoring and analysing execution
traces. In particular JPaX contains algorithms for detecting problems in multi-threaded programs, such
as data races and deadlocks [9]. Although JPaX analyses Java programs, the principles and theory
presented here are universal and apply in full to concurrent programs written in languages like C and
C++ as well [10].

1.1. Low-level data races

The traditional definition of a data race is as follows [6]:

A data race can occur when two concurrent threads access a shared variable and when
at least one access is a write, and the threads use no explicit mechanism to prevent the
accesses from being simultaneous.

Consider, for example, two threads that both access a shared object containing a counter variable x, and
assume that both threads call an increase method on the object, which increases x by 1. The increase
method is compiled into a sequence of bytecode instructions (load x to the operand stack, add 1, write
back the result). The Java Virtual Machine (JVM) executes this sequence non-atomically. Suppose
the two threads call increase at nearly the same time and that each of the threads execute the load
instruction first, which loads the value of x to the thread-local operand stack. Then they will both add
1 to the original value, which results in a combined increment of 1 instead of 2. This traditional notion
of data race will be referred to as a low-level data race, since it focuses on a single variable.
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The standard way of avoiding low-level data races on a variable is to protect the variable with a
lock: all accessing threads must acquire this lock before accessing the variable, and release it again
after. In Java, methods can be defined as synchronized which causes a call to such a method to
lock the current object instance. Return from the method will release the lock. Java also provides
an explicit statement form synchronized(obj){stmt}, for taking a lock on the object obj, and
executing statement stmt protected under that lock. If the above-mentioned increase method is declared
synchronized, the low-level data race cannot occur.

Several algorithms and tools have been developed for analysing multi-threaded programs for low-
level data races. The Eraser algorithm [6], which has been implemented in the Visual Threads tool [11]
to analyse C and C++ programs, is an example of a dynamic algorithm that examines a program
execution trace for locking patterns and variable accesses in order to predict potential data races.

The Eraser algorithm maintains a lock set for each variable, which is the set of locks that have been
owned by all threads accessing the variable in the past. Each new access causes a refinement of the
lock set to the intersection of the lock set with the set of locks currently owned by the accessing thread.
The set is initialized to the set of locks owned by the first accessing thread. If the set ever becomes
empty, a data race is possible. JPaX implements the Eraser algorithm [7,12]. Another commercial tool
performing low-level data race analysis is JProbe [13].

1.2. High-level data races

A program may contain a potential for concurrency errors, even when it is free of low-level data races
and deadlocks. Low-level data races concern unprotected accesses to shared fields. The notion of high-
level data races refers to sequences in a program where each access to shared data is protected by a
lock, but the program still behaves incorrectly because operations that should be carried out atomically
can be interleaved with conflicting operations.

A problem that was detected in NASA’s Remote Agent space craft controller [14] will serve as a
realistic example of a high-level data race situation. The problem was originally detected using model
checking [15]. The error was very subtle, and was originally regarded as being hard to find without
actually exploring all execution traces as done by a model checker. Since only very particular thread
interleavings result in a data race and hence corrupted data, a single execution trace does not usually
exhibit this error. As it turns out, it is an example of a high-level data race, and can therefore be detected
with the low-complexity algorithm presented in this paper.

The Remote Agent is an artificial-intelligence-based software system for generating and executing
plans on board a space craft. A plan essentially specifies a set of tasks to be executed within certain time
constraints. The plan execution is performed by the Executive. A sub-component of the Executive, the
task manager, is responsible for managing the execution of tasks, once the tasks have been activated.
The data structures used by the task manager are illustrated in Figure 1.

The state of the space craft (at any particular point) can be considered as consisting of a set of
properties, each being an assignment of a value to a variable corresponding to a component on board
the space craft. The values of variables are continuously read by sensors and recorded in a system state.
A task running on board the space craft may require that specific properties hold during its execution,
and it notifies the task manager about such requirements before the start. That is, upon the start of the
task, it first tries to lock those properties it requires in a lock table, telling the task manager that its
execution is only safe if they hold throughout the execution. For example, a task may require B to be
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Figure 1. The Remote Agent executive.

ON (assuming that B is some system variable). Now other threads cannot request B to be OFF as long
as the property is locked in the lock table. Next, the task tries to achieve this property (changing the
state of the space craft, and thereby the system state through sensor readings), and when it is achieved,
the task sets a flag achieved, associated with that variable, to true in the lock table. This flag is true
whenever the system state is expected to contain the property. These flags are initially set to false at
system initialization, are set to true in the scenario just described, and are set back to false once the
task no longer requires the property to hold.

A daemon constantly monitors that the system state is consistent with the lock table in the sense that
properties that are required to hold, as stated in the lock table, are actually also contained in the system
state. That is, it checks that: if a task has locked a value to some variable, and the corresponding flag
achieved is true, then it must be a true property of the space craft, and hence true in the system state.
Violations of this property may occur by unexpected events on board the space craft, which cause the
system state to be updated. The daemon wakes up whenever events occur, such as when the lock table
or the system state are modified. In the case when an inconsistency is detected, the tasks involved are
interrupted.

The relevant code from the task and the daemon is illustrated in Figure 2, using Java syntax
(the Remote Agent was coded in LISP). The task contains two separate accesses to the lock table:
one where it updates the value and one where it updates flag achieved. The daemon on the other hand
accesses all these fields in one atomic block. This can be described as an inconsistency in lock views,
as described below, and actually presents an error potential.

The error scenario is as follows: suppose the task has just achieved the property, and is about to
execute the second synchronized block, setting flag achieved to true. Suppose now, however, that
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Task Daemon

synchronized(table) { synchronized(table) {
table[N].value = V; if (table[N].achieved &&

} system_state[N] != table[N].value) {
issueWarning();

/* achieve property */ }
}

synchronized(table) {
table[N].achieved = true;

}

Figure 2. The synchronization inconsistency between a task and the daemon.

suddenly, due to unpredicted events, the property is destroyed on board the space craft, and hence
in the system state, and that the daemon wakes up, and performs all checks. Since flag achieved is
false, the daemon reasons incorrectly that the property is not supposed to hold in the system state, and
hence it does not detect any inconsistency with the lock table (although conceptually now there is one).
Only then the task continues, and sets flag achieved to true. The result is that the violation has been
missed by the daemon. The nature of this error can be described as follows.

The daemon accesses the value and flag achieved in one atomic block, while the task
accesses them in two different blocks. These two different ways of accessing the tuple
{value, achieved}, atomically and as a compound operation, is an inconsistency called view
inconsistency.

The seriousness of the error scenario depends on the frequency with which the daemon gets activated.
If events updating the lock table or the system state often occur, the daemon will just detect the problem
later, and hopefully soon enough. However, if such events are far apart, the task may execute for a while
without its required property holding. In the above example the view inconsistency is in itself not an
error, but a symptom that if pointed out may direct the programmer’s attention to the real problem, that
property achievement and setting the flag achieved are not done in one atomic block. More formal and
generic definitions of view inconsistency are presented in Sections 2 and 3. Note that repairing this
situation is non-trivial since achieving properties may take several clock cycles, and it is therefore not
desirable to hold the lock on the table during this process.

Detecting this error using normal testing is very difficult since it requires not only execution of
the just described interleaving (or a similar one), but it also requires the formulation of a correctness
property that can be tested for, and which is violated in the above scenario. However, regarding this
as a view inconsistency problem makes it possible to find the error without actually executing this
particular interleaving, and without a requirement specification.

Both aspects are very important. The success of the Eraser algorithm [6] confirms this. Data races,
both low-level or high-level ones, occur only rarely in a concrete run, because they only appear under a
certain schedule. This makes them very hard to observe using traditional testing. Therefore one tries to
observe the locking behaviour of a program and infer potential errors from that. The locking behaviour

c© US Government copyright Softw. Test. Verif. Reliab. 2003; 13:207–227



212 C. ARTHO, K. HAVELUND AND A. BIERE

of each thread does not change across different schedules (it is only dependent on the input, which can
be automated), and therefore it is a reliable base for fault-finding algorithms.

Requiring no annotations is not only important when it comes to the usability of a tool. Tools like
ESC/Java suffered from having a high initial overhead due to the required annotations in a pro-
gram [16]. Algorithms that do not require annotations are also more interesting from a research point
of view: an attempt is made to extract as much information as possible from the program itself rather
than having the user specify (possibly incorrect or redundant) information. Of course such approaches
are sometimes inherently more limited than ones requiring annotations. The goal is to find algorithms
that still capture the underlying problems with sufficient precision.

The algorithm presented in this paper achieves this to a high degree. In the Eraser algorithm [6] for
detecting low-level data races, the set of locks protecting a single variable, referred to as the lock set, is
considered. In this paper this idea is turned upside down. The variable set associated with a lock is now
of interest. This notion makes it possible to detect what will be referred to as high-level data races.
The inspiration for this problem was originally due to a small example provided by Doug Lea [17]. It is
presented in modified form in Section 2. It defines a simple class representing a coordinate pair with two
components x and y. All accesses are protected by synchronization on this, using synchronized
methods. Therefore, data race conditions on a low level are not possible. As this example will illustrate,
there can, however, still be data races on a higher level, and this can be detected as inconsistencies in
the granularity of variable sets associated with locks in different threads. The algorithm for detecting
high-level data races is a dynamic execution trace analysis algorithm like the Eraser algorithm [6].

1.3. Outline

The paper is organized as follows. Section 2 introduces the problem of high-level data races. A formal
definition of high-level data races is given in Section 3. Section 4 describes the JPaX framework
for analysing Java programs. Experiments carried out are described in Section 5. Section 6 gives an
overview of related work. Section 7 outlines future work and Section 8 concludes the paper.

2. INFORMAL DEFINITION OF HIGH-LEVEL DATA RACES

Consistent lock protection for a shared field ensures that no concurrent modification is possible.
However, this only refers to low-level access to the fields, not their entire use or their use in conjunction
with other fields. The remainder of this paper assumes that the detection of low-level data races is
covered by the Eraser algorithm [6], which can be applied in conjunction with the analysis described in
this paper. This section introduces a more precise definition of high-level data races. First a very basic
example is presented, followed by more pathological ones, which at first sight may appear as high-level
data races, but which will not be classified as such.

2.1. Basic definition

Figure 3 shows a class implementing a two-dimensional coordinate pair with two fields x, y, which are
guarded by a single lock.
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class Coord {
double x, y;
public Coord(double px, double py) { x = px; y = py; }
synchronized double getX() { return x; }
synchronized double getY() { return y; }
synchronized Coord getXY() { return new Coord(x, y); }
synchronized void setX(double px) { x = px; }
synchronized void setY(double py) { y = py; }
synchronized void setXY(Coord c) { x = c.x; y = c.y; }

}

Figure 3. The Coord class encapsulating points with x and y coordinates.

If only getXY, setXY, and the constructor are used by any thread, the pair is treated atomically
by all accessing threads. However, the versatility offered by the other accessor (get/set) methods
is dangerous: if one thread only uses getXY and setXY and relies on complete atomicity of these
operations, other threads using the other accessor methods (getX, setX, getY, setY) may falsify
this assumption.

Imagine, for example, a case where one thread, tr, reads both coordinates while another thread, tw,
sets them to zero. Assume that tr reads the variables with getXY, but that the write operation of tw
occurs in two phases, setX and setY. The thread tr may then read an intermediate result which
contains the value of x already set to zero by tw but still the original y value (not yet zeroed by tw).
This is clearly an undesired and often unexpected behaviour. In this paper, the term high-level data
race will describe the following kind of scenario.

A high-level data race can occur when two concurrent threads access a set V of shared
variables, which should be accessed atomically, but at least one of the threads does not
access the variables in V atomically.

In the coordinate pair example above, the set V is {x, y}, and thread tw violates the atomicity
requirement. Of course, the main question is how one determines whether a set of variables are to
be treated atomically, assuming that the user does not specify that explicitly. For now it is assumed
that an oracle determines this. In Section 3 an approximation to this oracle will be suggested, which
does not require any kind of specification to be provided by the user. Of course it is an undecidable
problem in practice, and furthermore requires a specification of the expected behaviour of the program.
For instance, in the above coordinate pair example, atomicity might not be required at all if the reader
only wants to sample an x value and a y value without them being related.

2.2. Refinement of the basic definition

Although the previous definition may be useful, it yields false positives (false warnings). Using the
coordinate example, any use of the methods getX, setX, getY, and setY will cause a high-level
data race. However, there exist scenarios where some of these access methods are allowed without
the occurence of high-level data races. Hence the notion of high-level data race needs to be refined.
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Thread t1 Thread t2 Thread t3 Thread t4

x4 = c.getX();
use(x4);

d1 = new Coord(1,2); x2 = c.getX(); x3 = c.getX(); d4 = c.getXY();
c.setXY(d1); use(x2); y3 = c.getY(); x4 = d4.getX();

use(x3,y3); y4 = d4.getY();
use(x4,y4);

Figure 4. One thread updating a pair of fields and three other threads reading fields individually.

This is analogous to the refinement in Eraser [6] of the notion of low-level data races in order to reduce
the number of false positives.

The refinement of the definition will be motivated with the example in Figure 4, which shows four
threads working in parallel on a shared coordinate pair c. Thread t1 writes to c (and is similar to tw
from Section 2.1) while the other threads t2, t3, and t4 read from c (t3 is similar to tr from Section 2.1).
The threads use local variables xi and yi of type double and di of type Coord, where i identifies
the thread.

Initially, only threads t1 and t3 are considered, the situation already described in Section 2.1.
Inconsistencies might arise with thread t3, which reads x in one operation and y in another operation,
releasing the lock in between. Hence, thread t1 may write to x and y in between, and t3 may therefore
obtain inconsistent values corresponding to two different global states.

Now consider the two threads t1 and t2. It is not trivial to see whether an access conflict occurs or
not. However, this situation is safe. As long as t2 does not use y as well, it does not violate the first
thread’s assumption that the coordinates are treated atomically. Even though t1 accesses the entire pair
{x, y} atomically and t2 does not, the access to x alone in t2 can be seen as a partial read. That is, the
read access to x may be interpreted as reading {x, y} and discarding y. So both threads t1 and t2 behave
in a consistent manner. Each thread is allowed to use only a part of the coordinates, as long as that use
is consistent.

The difficulty in analysing such inconsistencies lies in the wish still to allow such partial accesses to
sets of fields, like the access to x of thread t2. The situation between t1 and t4 serves as another, more
complicated, example of a situation which at first sight appears to provide a conflict, but which will be
regarded as safe. Regard thread t4 as consisting of two operations: the first consisting of the first two
statements, including use(x4), and the second operation consisting of the remaining four statements.
The second operation is completely self-contained, and accesses in addition to y everything the first
operation accesses (namely x). Consequently, the first operation in t4 likely represents an operation that
does not need y. Therefore, the two operations are unrelated and can be interleaved with the atomic
update statement in t1 without interfering with the operations of t4 on x and y. On a more formal
basis, t4 is safe because the set of variables accessed in the first operation of t4 is a subset of the set
of variables accessed in its second operation; the variable sets form a chain. When they do not form a
chain, they diverge. On the basis of this example, the definition of high-level data races can be refined
as follows.
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A high-level data race can occur when two concurrent threads access a set V of shared
variables, which should be accessed atomically, but at least one of the threads accesses V

partially several times such that those partial accesses diverge.

This definition is adopted for the remainder of the paper. It can, however, still lead to false positives
and false negatives as is described in Section 3.4.

The algorithm presented in the remainder of this paper does not distinguish between read and write
accesses. This abstraction is sufficiently precise because view consistency is independent of whether
the access is a read or a write: a non-atomic read access may result in inconsistent values among the
tuple read, because other threads may update the tuple between reads. A write access that is carried
out non-atomically allows other threads to read partial updates between write operations. Note that it
is assumed that at least one write access occurs; constant values can be ignored in this analysis.

3. FORMAL DEFINITION OF HIGH-LEVEL DATA RACES

This section defines view consistency. It lifts the common notion of a data race on a single shared
variable to a higher level, covering sets of shared variables and their uses. This definition assumes that
the specification of what fields have to be treated atomically is not provided by the user. It is instead
extracted by program analysis. This analysis turns the problem of high-level data races into a testable
property, using view consistency. The definition of this analysis is precise but allows for false positives
and false negatives. This is discussed at the end of this section.

3.1. Views

A lock guards a shared field if it is held during an access to that field. The same lock may guard several
shared fields. Views express what fields are guarded by a lock. Let I be the set of object instances
generated by a particular run of a Java program. Then F is the set of all fields of all instances in I .

A view v ∈ P(F ) is a subset of F . Let l be a lock, t a thread, and B(t, l) the set of all
synchronized blocks using lock l executed by thread t . For b ∈ B(t, l), a view generated by t with
respect to l, is defined as the set of fields accessed in b by t . The set of generated views V (t) ⊆ P(F )

of a thread t is the set of all views v generated by t . In the previous example in Figure 4, thread t1 using
both coordinates atomically generates view v1 = {x, y} under lock l = c. Thread t2 only accesses x

alone under l, having view v2 = {x}. Thread t3 generates two views: V (t3) = {{x}, {y}}. Thread t4 also
generates two views: V (t4) = {{x}, {x, y}}.

3.2. Views in different threads

A view vm generated by a thread t is a maximal view, if and only if (iff) it is maximal with respect to
set inclusion in V (t), i.e.

∀v ∈ V (t) [vm ⊆ v → vm = v]
Let M(t) denote the set of all maximal views of thread t . Only two views which have fields in common
can be responsible for a conflict. This observation is the motivation for the following definition.
Given a set of views V (t) generated by t and a view v′ generated by another thread, the overlapping
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views of t with v′ are all non-empty intersections of views in V (t) with v′

overlap(t, v′) ≡ {v′ ∩ v | (v ∈ V (t)) ∧ (v ∩ v′ �= ∅)}
A set of views V (t) is compatible with the maximal view vm of another thread iff all overlapping views
of t with vm form a chain, i.e.

compatible(t, vm) iff ∀v1, v2 ∈ overlap(t, vm) [v1 ⊆ v2 ∨ v2 ⊆ v1]
View consistency is defined as mutual compatibility between all threads: a thread is only allowed to use
views that are compatible with the maximal views of all other threads.

∀t1 �= t2, vm ∈ M(t1) [compatible(t2, vm)]
In the example in Figure 4, the views were

V (t1) = M(t1) = {{x, y}}
V (t2) = M(t2) = {{x}}
V (t3) = M(t3) = {{x}, {y}}
V (t4) = {{x}, {x, y}}
M(t4) = {{x, y}}

There is a conflict between t1 and t3 as stated, since {x, y} ∈ M(t1) intersects with the elements in
V (t3) to {x} and {y}, which do not form a chain. A similar conflict exists between t3 and t4.

The above definition of view consistency uses three concepts: the notion of maximal views; the notion
of overlaps; and finally the compatible notion, also referred to as the chain property. The chain property
is the core concept. Maximal views do not really contribute to the solution other than to make it more
efficient to calculate and reduce the number of warnings if a violation is found. The notion of overlaps
is used to filter out irrelevant variables.

3.3. Examples

A few examples help to illustrate the concept. Table I contains examples involving two threads.
Note that the outermost brackets for the set of sets are omitted for better readability. Example 1 is
the trivial case where no thread treats the two fields {x} and {y} atomically. Therefore there is no
inconsistency. However, if thread ta treats {x, y} as a pair, and thread tb does not, there is a conflict
as shown in example 2. This even holds if the first thread itself uses partial accesses on {x} or {y},
since this does not change its maximal view. Example 3 shows that case. Finally, example 4 illustrates
the case where thread ta uses a three-dimensional coordinate set atomically and thread tb reads or
updates different subsets of it. Since the subsets are compatible as defined in Section 3.2, there is no
inconsistency.

Table II shows four cases with three threads. The first entry, example 5, corresponds to the first
three threads in Figure 4. There, thread te violates the assumption of tc about the atomicity of {x, y}.
Example 6 shows a ‘fixed’ version, where te does not access {x}. More complex circular dependencies
can occur with three threads. Such a case is shown in example 7. Out of three fields, each thread only
uses two, but these two fields are used atomically. Since the accesses of any thread only overlap in
one field with each other thread, there is no inconsistency. This example only requires a minor change,
shown in example 8, to make it faulty: assume the third view of tc were {y, z} instead of {y}. This would
contribute another maximal view {y, z}, which conflicts with the views {y} and {z} of td .
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Table I. Examples with two threads illustrating the principle of view consistency.

# Thread ta Thread tb Incompatible views

1 Views V (t) {x}, {y} {x}, {y} None
Maximal views M(t) {x}, {y} {x}, {y}

2 Views V (t) {x, y} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(ta) ∩ V (tb)
Maximal views M(t) {x, y} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(ta) ∩ V (tb)

3 Views V (t) {x, y}, {x}, {y} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(ta) ∩ V (tb)
Maximal views M(t) {x, y} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(ta) ∩ V (tb)

4 Views V (t) {x, y, z} {x, y}, {x} None
Maximal views M(t) {x, y, z} {x, y}

Table II. Examples with three threads illustrating the principle of view consistency.

# Thread tc Thread td Thread te Incompatible views

5 V (t) {x, y} {x} {x}, {y} {x} = {x, y} ∩ {x} ∈ M(tc) ∩ V (te)
M(t) {x, y} {x} {x}, {y} {y} = {x, y} ∩ {y} ∈ M(tc) ∩ V (te)

6 V (t) {x, y} {x} {y} None
M(t) {x, y} {x} {y}

7 V (t) {x, y}, {x}, {y} {y, z}, {y}, {z} {z, x}, {z}, {x} None
M(t) {x, y} {y, z} {z, x}

8
V (t) {x, y}, {x}, {y, z} {y, z}, {y}, {z} {z, x}, {z}, {x} {y} = {y, z} ∩ {y} ∈ M(tc) ∩ V (td)
M(t) {x, y}, {y, z} {y, z} {z, x} {z} = {y, z} ∩ {z} ∈ M(tc) ∩ V (td)

3.4. Soundness and completeness

Essentially, this approach tries to infer what the developer intended when writing the multi-threaded
code by collecting views. The sets of shared fields which must be accessed atomically are not available
in the program code. Therefore views are used to detect the most likely candidates, or maximal views.
View consistency is used to detect violations of accesses to these sets. The underlying assumption
behind the algorithm is that an atomic access to a set of shared fields is an indication of atomicity.
Under this assumption, a view consistency violation indicates a high-level data race.

However, sets of fields may be used atomically even if there is no requirement for atomic access.
Therefore, an inconsistency may not automatically imply a fault in the software. An inconsistency that
does not correspond to a fault is referred to as a false positive (spurious warning). Similarly, lack of
a reported inconsistency does not automatically imply lack of a fault. Such a missing inconsistency
report for an existing fault is referred to as a false negative (missed fault).
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False positives are possible if a thread uses a coarser locking than actually required by operation
semantics. This may be used to make the code shorter or faster, since locking and unlocking
can be expensive. Releasing the lock between two independent operations requires splitting one
synchronized block into two blocks.

False negatives are possible if all views are consistent, but locking is still insufficient. Assume a set
of fields that must be accessed atomically, but is only accessed one element at a time by every thread.
Then no view of any thread includes all variables as one set, and the view consistency approach cannot
find the problem. Another source of false negatives is the fact that a particular (random) run through
the program may not reveal the inconsistent views, if the corresponding code sections are not executed
even once.

The fact that false positives are possible means that the solution is not sound. Similarly, the
possibility of false negatives means that the solution neither is complete. This may seem surprising, but
actually also characterizes the Eraser low-level data race detection algorithm [6] implemented in the
commercial Visual Threads tool [11], as well as the deadlock detection algorithm also implemented
in the same tool. The same holds for the similar algorithms implemented in JPaX. For Eraser, it is
very hard to determine automatically whether a warning is a false positive or a false negative [18].
Furthermore, it is an unsolved problem to prove soundness and completeness properties about the
Eraser algorithm. In real software programs, there are always situations where having program threads
use inconsistent values is acceptable. For example, a monitoring thread may just ‘sample’ a value at a
given time; it is not crucial that this value is obtained with proper synchronization, because it does not
have to be up-to-date.

The reason for the usefulness of such algorithms is that they still have a much higher chance of
detecting an error than if one relies on actually executing the particular interleaving that leads to
an error, without requiring much computational resource. These algorithms are essentially based on
turning the property to be verified (in this case: no high-level data races) into a more testable property
(view consistency). This aspect is discussed in more detail in [9] in relation to deadlock detection.

4. IMPLEMENTATION

For detecting high-level data races in software, a program analysis algorithm that extracts the views
generated by all threads has to be implemented. This analysis can be static, analysing the code, or
dynamic, analysing an execution trace. The implementation used in the experiments is a dynamic
analysis. The experiments were carried out with JPaX [7,8], a run-time verification tool consisting of
two parts: an instrumentation module and an observer module. The instrumentation module produces
an instrumented version of the program, which when executed, generates an event log with the
information for the observer to determine the correctness of examined properties. Figure 5 illustrates
the situation.

The observation of events generated by the instrumented program is divided into two stages: an
event analysis and an interpretation of events. The former reconstructs the context required for the
event interpretation, while the latter contains the actual observation algorithms. The observer used here
only checks for high-level data races. For these experiments, a new and yet totally un-optimized version
of JPaX was used. It instruments every field access, regardless of whether it can be statically proven
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Figure 5. Structure of the run-time analysis.

to be thread-safe. This is the reason why some data-intensive applications created log files which grew
prohibitively large (>0.5 GB) and could not be analysed.

4.1. Java bytecode instrumentation

Part of JPaX is a very general and powerful instrumentation package for instrumenting Java
bytecode [8]. The requirements of the instrumentation package include power, flexibility, ease of use,
portability, and efficiency. Alternative approaches were rejected, such as instrumenting Java source
code, using the debugging interface, and modifying the JVM because they violated one or other of
these requirements.

It is essential to minimize the impact of the instrumentation on program execution. This is especially
the case for real-time applications, which may particularly benefit from this approach. Low-impact
instrumentation may require careful trade-offs between the local computation of the instrumentation
and the amount of data transmitted to the observer. The instrumentation package allows such trades to
be made by allowing seamless insertion of Java code at any program point.

Code is instrumented based on an instrument specification consisting of a collection of predicate-
action rules. A predicate is a filter on source code statements. These predicates are conjunctions
of atomic predicates including predicates that distinguish statement types, presence of method
invocations, pattern-matched references to fields and local variables, etc. The actions are specifications
describing the inserted instrumentation code. Actions are inserted where predicates evaluate to true.
The actions include reporting the program point (method and source statement number), a time stamp,
the executing thread, the statement type, the value of variables or an expression, and invocation of
auxiliary methods. Values of primitive types are recorded in the event log. If the value is an object, a
unique integer descriptor of the object is recorded.

The instrumentation has been implemented using Jtrek [19], a Java API that provides lower-level
instrumentation functionality. In general, use of bytecode instrumentation, and use of Jtrek in particular,
has worked out well, but there are some remaining challenges with respect to instrumenting the
concurrency aspects of program execution.

4.2. Event stream format

All operations in the instrumented application which write to the event log have to be as fast as possible.
Among other factors, lightweight locking, incurring as little lock contention as possible, helps achieve
this goal. When several pieces of information are logged by the instrumentation, they are therefore
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recorded separately, not atomically. As a result of this, one event can generate several log entries.
Log entries of different threads may therefore be interleaved.

To allow a faithful reconstruction of the events, each log entry includes the hash code of the
active thread creating the log entry. Therefore the events can all be assigned to the original threads.
The contextual information in events includes thread names, code locations, and re-entrant acquisitions
of locks (lock counts). The event analysis package maintains a database with the full context of the
event log.

4.3. Observer architecture

As described above, run-time analysis is divided into two parts: instrumenting and running the
instrumented program, which produces a series of events, and observing these events. The second part,
event observation, can be split into two stages: event analysis, which reads the events and reconstructs
the run-time context; and event interpretation (see Figure 6). Note that there may be many event
interpreters.

Reusing the context reconstruction module allows for writing simpler event interpreters, which can
subscribe to particular event types made accessible through an observer interface [20] and which are
completely decoupled from each other.
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Each event interpreter builds its own model of the event trace, which may consist of dependency
graphs or other data structures. It is up to the event interpreter to record all relevant information for
keeping a history of events, since the context maintained by the event analysis changes dynamically
with the event evaluation. Any information that needs to be kept for the final output, in addition to
context information, needs to be stored by the event interpreter. If an analysis detects violations of its
rules in the model, it can then show the results using stored data.

In addition to clearly separating two aspects of event evaluation, this approach has other advantages:
many algorithms dealing with multi-threading problems require very similar information, namely lock
and field accesses. If a log generated by an instrumented program includes at least this information,
then several analysis algorithms can share the same events. Furthermore, splitting event observation
into two steps also allows writing an event analysis front-end for event logs generated by tools other
than JPaX, reusing the back-end, event interpretation.

5. EXPERIMENTS

Before analysing applications, the implementation of the algorithm was tested using 10 hand-crafted
programs exhibiting different combinations of tuple accesses, such as the ones shown in Section 3.3.
The test set included applications which contain high-level data races and others that do not.
The primary purpose of this test set was to test the implementation of the view consistency algorithm.
Furthermore, the tests served to fine-tune the output so it is presented in an easily readable manner.
This makes the evaluation of warnings fairly easy, as long as the semantics of the fields used in
conflicting views is known and it can be inferred whether these fields have to be used as an atomic
tuple or not.

Once these tests ran successfully, four real applications were analysed. Those applications included
a discrete-event elevator simulator, and two task-parallel applications: SOR (successive over-relaxation
over a 2D grid), and a travelling salesman problem (TSP) application [21]. The latter two use worker
threads [4] to solve the global problem. In addition, a Java model of a NASA planetary Rover controller,
named K9, was analysed. The original code is written in C++ and contains about 35 000 lines of code
(LOC), while the Java model is a heavily abstracted version with 7000 lines. Nevertheless, it still
includes the original, very complex, synchronization patterns. Note that all Java foundation classes
were excluded from the analysis. This would have increased the overlapping sets to a point where the
analysis would have produced too many warnings: every print statement using System.out would
have resulted in overlapping sets with any other view containing an access to System.out.

Table III summarizes the results of the experiments. All experiments were run on a Pentium III
with a clock frequency of 750 MHz using Sun’s Java 1.4 Virtual Machine, given 1 GB of memory.
Only applications which could complete without running out of memory were considered. It should be
noted that the overhead of the built-in just-in-time (JIT) compiler amounts to 0.4 seconds, so a run time
of 0.6 seconds actually means only about 0.2 seconds were used for executing the Java application.
The Rover application could not be executed on the same machine where the other tests were run, so
no time is given there.

It is obvious that certain applications using large data sets incurred a disproportionately high
overhead in their instrumented version. Many examples passed the view consistency checks without
any warnings reported. For the elevator example, two false warnings referred to two symmetrical
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Table III. Analysis results for the given example applications.

Size Number Run time (s), Run time (s), Log size Warnings
Application (LOC) of classes uninstrumented instrumented (MB) issued

Elevator 500 5 16.7 17.5 1.9 2
SOR 250 3 0.8 343.2 123.5 0
TSP, very small run (4 cities) 700 4 0.6 1.8 0.2 0
TSP, larger run (10 cities) 700 4 0.6 28.1 2.3 0
NASA’s K9 Rover controller 7000 82 — — — 1

cases. In both cases, three fields were involved in the conflict. In thread t1, the views V (t1) =
{{1, 3}, {3}, {2, 3}} were inconsistent with the maximal view vm = {1, 2, 3} of t2. While this looks
like a simple case, the interesting aspect is that one method in t1 included a conditional access to
field 1. If that branch had been executed, the view {2, 3} would actually have been {1, 2, 3}, and there
would have been no inconsistency reported. Since not executing the branch corresponds to reading data
and discarding the result, both warnings are false positives.

One warning was also reported for the NASA K9 Rover code. It concerned six fields which were
accessed by two threads in three methods. The developer responsible explained the large scope of the
maximal view with six fields as an optimization, and hence it was not considered an error. The Remote
Agent space craft controller was only available in LISP and so could not be directly tested. However,
the tool used was successfully applied to test cases reflecting different constellations including that
particular high-level data race.

So far, experiments indicate that experienced programmers intuitively adhere to the principle of
view consistency. Violations can be found, but are not very common, as shown in the experiments.
Some optimizations produce warnings that constitute no error. Finally, the two false positives from the
elevator example show that the definition of view consistency still needs some refinement.

6. RELATED WORK

As described in Section 1, view consistency was partially inspired by the Eraser algorithm [6].
Beyond this algorithm, related work does not only exist in software analysis, but also in database
and hardware concurrency theory.

6.1. Static analysis and model checking

Beyond Eraser, several static analysis tools exist that examine a program for low-level data races.
The Jlint tool [1] is such an example. The ESC [16] tool is also based on static analysis, or more
generally on theorem proving. It, however, requires annotation of the program, and does not appear to
be as efficient as the Eraser algorithm in finding low-level data races. Dynamic tools have the advantage
of having more precise information available in the execution trace. More heavyweight dynamic
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synchronized(lock) {
tmp = x.getValue();

}
tmp++;
synchronized(lock) {

x.setValue(tmp);
}

Figure 7. A non-atomic operation that does not violate view consistency.

approaches include model checking, which explores all possible schedules in a program. Recently,
model checkers have been developed that apply directly to programs (instead of just on models
thereof), for example, the Java PathFinder (JPF) system developed by NASA [22,23], and similar
systems [24–28]. Such systems, however, suffer from the state-space explosion problem. An extension
of JPF performs low-level data race analysis (and deadlock analysis) in simulation mode, whereafter
the model checker is used to demonstrate whether the data race (deadlock) warnings are real or not
[12]. However, a data race, that is low level as well as high level, can be hard to find with model
checking since it typically needs to cause a violation of some explicitly stated property.

High-level data races cover inconsistencies in value accesses. Another kind of fault that is closely
related to high-level data races is the idea of atomicity of sequences of operations, such as an entire
method [29]. High-level data races do not cover such atomicity violations, although it is possible that an
atomicity violation can lead to a high-level data race. Figure 7 shows a possible scenario where reading
the value, performing an operation using it, and writing the result back are not carried out atomically.
The result will be based on a possibly outdated value, because other threads may have updated the
shared field, x, in the meantime. Since view consistency deals with sets of values, it cannot capture this
kind of error, as shown by Wang and Stoller [30]. Only full knowledge about the desired atomicity can
achieve this. A static analysis algorithm checking an implementation against an atomicity specification
is presented in [29]. Recently von Praun has shown that an extension of view consistency can be used
to detect similar faults [31]. It uses a method view which assumes that all shared fields accessed within
the scope of a method should be used atomically.

6.2. Database concurrency

In database theory, shared data is stored in a database and accessed by different processes. Each process
performs transactions, sequences of read and write operations, on the data. A sequence of these
operations corresponding to several transactions is called a history. Based on this history, it can
be inferred whether each transaction is serializable, i.e. whether its outcome corresponds to having
run that transaction in isolation [32,33]. Database accesses try to avoid conflicts by construction, by
structuring operations into transactions. The view consistency approach attempts to analyse behaviour
patterns in multi-threaded programs and to verify a similar behaviour in an existing program.

There are several parallels to multi-threaded programs, which share their data in memory instead of
in a database. Data races on shared fields in a multi-threaded program can be mapped to database
access conflicts on shared records. Lock protection in a multi-threaded program corresponds to
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an encapsulation of read and write accesses in a transaction. The key problem addressed by this
paper, having intermediate states accessible when writing non-atomically a set of fields, maps to the
inconsistent retrieval problem in databases. In such a history, one transaction reads some data items in
between another transaction’s updates on these items. A correct transaction scheduler will prevent such
an access conflict, as long as the accesses of each process are correctly encapsulated in transactions.

High-level data races concern accesses to sets of fields, where different accesses use different sets.
Similar problems may be seen in databases, if the programmer incorrectly defines transactions which
are too fine-grained. For example, assume a system consists of a global database and an application
using reading and writing threads. The writing threads use two transactions to update the database,
the reading threads access everything in a single transaction. Here, the reader’s view is inconsistent,
since it may read an intermediate state of the system. If the writer uses a single transaction, the fault
is corrected. It is likely that the abstraction provided by database query languages such as SQL [34]
prevents some of these problems occurring.

Furthermore, concurrency theory as used for databases and transaction systems is moving towards
richer semantics and more general operations, called activities [35]. Activities are atomic events in
such a system. Like in classical transactions, low-level access conflicts are prevented by a scheduler
which orders these operations.

Finally, database theory also uses the term view under different meanings. Specifically, the two
terms view equivalence and view serializability are used [33]. These two terms are independent of
view consistency as defined in this paper.

So far, only single database systems have been covered. In distributed databases, the virtual
partitioning algorithm exhibits a problem very similar to the view consistency problem presented here:
each transaction on an item operates on a set of entries, the set of all database entries for a single
item, which is distributed on different sites. A view in this context is the set of sites with which a
transaction is able to communicate [33]. Ideally, a transaction has a view including all sites, so all
updates are ‘atomic’ on a global scale. However, communication delays and failures prevent this from
being a practical solution. The virtual partitioning protocol [36] ensures that all transactions have the
same view of the copies of data that are functioning and those that are unavailable. Whereas a view
in a distributed database corresponds to one data item which should be accessed atomically, a view
as described in this paper encompasses sets of distinct data items. The applicability of ideas from this
protocol to the view consistency model in the multi-threading domain looks promising.

6.3. Hardware concurrency

In hardware design and compiler construction, Lamport has made a major step towards correct shared
memory architectures for multiprocessors [37]. He uses sequential consistency as a criterion for
ensuring correctness of interleaved operations. It requires all data operations to appear to have executed
atomically. The order in which these operations execute has to be consistent with the order seen by
individual processes.

Herlihy and Wing use a different correctness condition called linearizability [38]. It provides the
illusion that each operation applied by concurrent processes takes effect instantaneously at some point
between its invocation and response. Linearizability is a stronger property than sequential consistency
and has the advantage that it preserves real-time ordering of operations. Although the theory is very
general, it is geared towards hardware and compiler construction because it allows the exploitation
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of special properties of concurrent objects where transactions would be too restrictive. However, it is
not directly applicable to multi-valued objects and seems to be incapable of capturing such high-level
problems.

Lamport’s notion of sequential consistency is rather restrictive and can be relaxed such that
processors are allowed to read older copies of data as long as the observed behaviour is
indistinguishable from a conventional shared memory system [39]. Mittal and Garg extended this work
and Herlihy’s linearizability [38] to multi-object operations, such as double-register compare and swap
operations [40]. Problems occurring with such multi-object operations are very much alike to high-level
data races. Unlike the approach shown in this paper, which deals with access patterns, their approach
is concerned with the interleaving of operations and based on histories as known in database literature.

7. FUTURE WORK

The most urgent problem is to make the run-time analysis more scalable. The instrumentation
in the run-time analysis tool JPaX has to be optimized with respect to statically provable thread
safety. For instance, read-only or thread-local variables do not have to be monitored. Of course
such an optimization has to be conservative and take possible aliasing of references into account.
Another optimization is to execute logging instructions only a few times, instead of every time they are
reached. A few executions of each instruction (one by each involved thread) are often enough to detect
a problem.

Apart from that, the observer analysis could run on-the-fly without event logging. This would
certainly eliminate most scalability problems. In addition to that, the current version reports the same
conflict for different instances of the same object class. This results in a large error log, which contains
redundant information.

On the theoretical side, it is not yet fully understood how to deal properly with nested locks.
The views of the inner locks cause conflicts with the larger views of outer locks. These conflicts
are spurious. The elevator case study has shown that a control-flow independent definition of view
consistency is needed. Furthermore, data flow between field accesses has to be considered to refine the
notion of high-level data races. A combination of static and dynamic analyses may be better suited to
check such a revised definition. Finally, there is a need to study the relationship to database concurrency
and hardware concurrency theory in more detail.

8. CONCLUSIONS

Data races denote concurrent access to shared variables with insufficient lock protection, leading to a
corrupted program state. Classical, or low-level, data races concern accesses to single fields. The notion
of high-level data races deals with accesses to sets of related fields which should be accessed atomically.

View consistency is a novel concept considering the association of variable sets to locks. This permits
detection of high-level data races that can lead to an inconsistent program state, similar to classical low-
level data races. Experiments on a small set of applications have shown that developers seem to follow
the guideline of view consistency to a surprisingly large extent. Thus view consistency captures an
important idea in multi-threading design.
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6. Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson T. Eraser: A dynamic data race detector for multithreaded

programs. ACM Transactions on Computer Systems 1997; 15(4):391–411.
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